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SUMMARY 

Considered below are the high Reynolds number flows of an incompressible fluid, and their nonparallel 
stability properties, in certain plane channels whose widths vary slowly in the streamwise direction. The first 
approximation to the steady-state flow is governed by the classical boundary layer equations but with the 
pressure unknown. Solutions, some including separation and reattachment, to this are obtained numerically 
for a range of the parameters involved, and the stability of the resulting flows is considered using fixed 
frequency disturbances and taking into account the nonparallel nature of the basic flow by use of a W.K.B. 
method. The calculations yield critical Reynolds numbers, below which all the disturbances decay down- 
stream, and for various Reynolds numbers above the critical values the growths of the small disturbances are 
c~culated. The results are specialized to a particular class of channels which are straight far upstream and far 
downstream but vary in between. So the predictions should be much more easily amenable to experimental 
investigation and comparisons than those of the more idealized, diverging channel, flow problem studied by 
Eagles & Weissman [1 ] and the only other basic flow seriously studied from the viewpoint of nonparallel flow 
stability theory, the Blasius boundary layer. The results also represent the first application of both quasi- 
parallel and slightly non-parallel stability theory to channels involving slowly varying but finite changes in 
width. 

1. Introduction 

The linear stability of slightly nonparallel flows is a very complicated matter and its application 

to internal or external streaming flows, in channels and boundary layers, has recently received 

considerable theoretical attention. The main aim of the theoretical treatments is to obtain some 

measure of improvement upon the quasi-parallel theory, which had previously been used exten- 

sively but without much knowledge of its limitations. For external flows, Bouthier [2], [3], 

Gaster [4] & Smith [5] have considered the theoretical nonparallel flow stability of the Blasius 

boundary layer on a flat plate. For internal flows Eagles & Weissman [1 ] have examined the 

nonparallel stability of the flow in a straight-walled divergent channel, with a small divergence 

angle proportional to the inverse of the Reynolds number. All these papers studied fixed 

frequency disturbances of the basic flow, incidentally, and attempted a determination of their 

growth or decay with increasing distance downstream. Other theoretical contributions have 

been made by Ling & Reynolds [6], Drazin [7] and Nayfeh, Mook & Saric [8]. Some experi- 

mental investigations have also been made on the stability of nonparallel flows but mainly for 
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external boundary layers (e.g., Schubauer & Skramstad [9], Ross, Barnes, Burns & Ross [10]). 
Related experimental work on the stability properties of slightly nonparallel flows through 

channels, which is the concern of this paper, appears to be virtually non-existent, however. 
Probably one of the main difficulties in attempting an experimental verification of the theoreti- 
cal predictions of Eagles & Weissman [1 ], the only previous study of internal nonparallel flow 
stability, is that of setting up the original Jeffery-Hamel steady flows they considered. For if we 
curve the channel walls from parallel to divergent, in order to produce a straight-walled diver- 
gent section of channel, in practice there is no simple analytic theory available which describes 
the effect of the curvature, even in the steady state. It is true that Fraenkel's [ 11 ], [12] internal 

flow theory of the effects of very small wall curvatures may be used to describe flows whose 
first approximations are everywhere Jeffery-Hamel flows, but in the case considered by Eagles 
& Weissman [1 ] of high Reynolds number and small angle of divergence, with the product of 

the Reynolds number and the divergence angle remaining of order unity, the length and ulti- 
mate width of channel required in practice would be 'enormous', to quote Fraenkel, and so of 

doubtful value experimentally. Even then, the effect of wall curvature on stability would be 
rather difficult to predict, though almost certainly of smaller order of magnitude than the 
effects described by Eagles & Weissman [1 ]. Severe difficulties, then, would be encountered 

experimentally in any attempt to compare with the theoretical predictions of Eagles & Weiss- 
man [1]. 

To partly remedy these difficulties in relation to experimental verification of nonparallel 
channel flow stability we will consider theoretically the following flow problem, which we 
believe presents a much more realizable flow situation physically. Let x, y be dimensionless 
rectangular Cartesian co-ordinates and let the slowly varying walls of the channel be given by y 

= +_/-/(X), where X = ex is a 'slow variable' and e is small. This is not the case considered by 
Fraenkel [11, 12], incidentally; his case is considerably more involved. Let R be the characteris- 
tic Reynolds number based on half the volumetric flow rate and defined precisely in (2.2) 

below, and set Re = 3 .̀ Clearly if 3. < <  1 (as e ~ 0) then a steady state flow theory may be 
developed in which Poiseuille flow forms a valid first approximation. A more interesting case, 
the one we study here, is to take 3̀  to be constant, i.e. independent of e in the limit as e -+ 0 

and R ~ oo. Then a stream function of the form ~b --- qz(X,y) yields a first approximation which 
satisfies the nonlinear boundary layer equation, and so the steady state flow deviates nonlinear- 
ly from Poiseuille flow and includes the possibility of separation and reattachment taking place. 
Such a possibility would be expected to have a dramatic effect on the stability properties of the 
motion. 

,( O(R) 

J 

~ X  

• f /  / f I 

Figure 1. The non-dimensional geometry of the channel and the coordinates used. 

Journal of Engineering Math., Vol. 14 (1980) 219-237 



Nonparallelism in channel flow stability 221 

In fact we specialize in this paper to the case of the expanding channel with walls given by 
H(X) = 1 + il tanh X. So H(-oo) = 1, H(oo) -- 3/2 and the flow far upstream and far downstream 
is expected to be plane parallel Poiseuille flow. The steady nonparallel flow in between is found 
numerically (see Sec. 2) including some cases with separation and reattachment which, here, are 
regular phenomena. Indeed, our solutions are almost certainly the simplest examples yet found 
of boundary layer flows admitting regular separation and reattachment. Equally significantly, 

they provide a uniformly valid leading order description of the entire flow field, a most unusual 
but highly desirable attribute in a separating flow at high Reynolds number. The linear non- 
parallel and parallel stability of the channel flows is then studied using fixed frequency distur- 
bances. The theoretical method is described in Sec. 3, the calculation method and results are 

presented in Sec. 4, and a final discussion is given in Sec. 5. In contrast to the only cases of 
nonparallel flows studied previously for nonparallel effects, e.g. the straight-walled channel 

(Eagles & Weissman [1])and the boundary layer (Bouthier [2, 3], Gaster [4], Smith [5]), there 
is no simple similarity solution for the steady state flows in our cases and so the form of the 
basic flow is different at each X-station and for each given value of X. Further the results 
obtained represent, to the best of our knowledge, the first application of even quasi-paralM 
stability theory to channels having slowly varying but finite changes in width. We believe that 

the results should be much more useful practically and much more readily amenable to experi- 
mental study. 

The main predictions are summarized in Figure 4 below where we show a graph of two 
critical Reynolds numbers versus X. The continuous curve in Figure 4 is that based on the 
nonparallel theory using as the representative disturbance quantity the growth rate of the 
kinetic energy density of the disturbances, while the dashed curve is based on quasi-paralM 
stability theory. In using this figure one should recall that the relation Re = X holds and that the 

1 channel walls are given by y = _+(1 + ~ tanh ex). Thus for a given channel of this form and a 

given Reynolds number we may calculate the value of X; then if the point (R, X) is to the left of 
the continuous curve the flow is completely stable to the fixed frequency disturbances con- 

sidered in this paper and to any superposition of these. On the other hand, if the point (R, X) is 
to the right of the curve then some fixed frequency disturbances will grow downstream over a 
limited range of values of X, so the flow is unstable in this sense. We also plot the stable and 

unstable regions in the e, R plane in Figure 5 and present a further discussion and the interpre- 
tation of all the results in Sec. 5. 

Our emphasis, then, is on producing theoretical predictions of the stability properties in 
certain reasonable, nonparallel, channel flow situations with the hope that experimental com- 
parisons may be made. We believe it is likely that a general random small disturbance may be 
regarded as containing, by fourier decomposition, components of the fixed frequency type 
considered here. So in principle experiments could be performed to examine what practical 
evidence there is of instability in the regions predicted by the present theory. The work here 

also enables us to quantify to some extent the differences between quasi-parallel and nonparal- 

lel stability theory. The differences do not turn out to be especially excessive, at least in terms 
of the predictions for the critical Reynolds numbers for instance. 
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2. The steady state flow 

Our concern in this section is with the steady planar laminar flow at high Reynolds number 
through a fixed channel of slowly varying shape. Far upstream the channel walls are taken to be 
parallel and to contain incompressible fluid in plane Poiseuille motion. We let ~O, (u, v), p 
denote the stream function, the velocity vector and the fluid pressure, nondimensionalized with 
respect to M, M/a and pMa/a 2 respectively, where 2M, a,p are in turn the volumetric flow rate 

per unit thickness of the oncoming Poiseuille flow, the undisturbed channel width and the fluid 
density. The oncoming flow is then described by 

ap - 24 
q j - + 3 y - 4 y  a, u - + 3 - 1 2 y  2, v-+O, --~x-+ R a sx -+ -oo .  (2.1) 

Here x, y are rectangular Cartesian co-ordinates in the streamwise and transverse directions 
respectively, nondimensionalized with respect to a. Thus the channel walls far upstream are 

1 given by y = _+i. Also, R is the Reynolds number defined by 

R = M/v. (2.2) 

A more usual Reynolds number might be defined as 

k(x)  = Vo (X)aH(X)/~ 

where Uo is the streamwise velocity at the centre of the channel. But then/~(X) varies with X; 
so the absolute definition (2.2) is more suitable. It may be easily shown that 

R(_+ oo) = (3/2)R 

however. 

The equations governing if, u, v and p in general are the Navier-Stokes equations, while the 
boundary conditions supplementing (2.1) are the no-slip conditions at the walls and a down- 

stream condition of boundedness as x -+ co, although the latter need not concern us in detail 
here. The nondimensionalization is chosen to ensure that ff --- +1 on the upper and lower walls 

respectively. 
Turning now to the choice made for the degree of slow variation of the channel walls, we 

decide to study a channel whose typical axial length scale is O(R), i.e. the slopes of the channel 
walls are O(R -~) typically. The two main reasons for this choice are, first, that longer typical 
axial length scales generally produce a basic flow which is essentially just a minor perturbation 
of the original Poiseuille flow (e.g. Wilson [13], Tutty [14]), while, second, shorter length scales 
tend to lead to multi-structured flow fields (Smith [15, 16, 17]), often involving separation and 
detached shear layers. The overall properties of the latter flowfields are much too complicated 
to permit a convincing stability analysis to follow readily. By contrast, with our choice of 
typical length scale the slowly varying flow field is single-structured, it is governed by the 
classical boundary layer equations throughout and yet it is fully nonlinear, implying that such 
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interesting effects as inflexion points in the velocity profiles and even separation and reattach- 

ment can arise. 
Suppose then that the channel width 2H is a function of  the slow streamwise co-ordinate X, 

where 

X = ex (2.3) 

and e is the small parameter described in the introduction. Thus in accordance with the above 

discussion we suppose also that R and e are related in the form 

Re = )t (2.4) 

where X is an 0(1)  constant, the channel shape factor. We shall later vary X and so obtain a 

number of  different flow fields. It is natural to suppose that ff is a function of  X and y and 

then we find that a consistent asymptotic expansion of  the flow solution can be made in the 

form 

~, = ,~(x,y) + o ( d  ) (2 .5)  

The associated velocities and pressure expand in the form 

u=U(X,y)+O(e2) ,  v=eV(X,y )+O(e3) ,  p = P ( X ) + O ( e  2) (2.6) 

and so the lowest order streamwise momentum equation reduces to the boundary layer equa- 

tion 

UUx - XI'xUy = - dP/dX + Uyy/X, with U = qZy. (2.7a) 

The boundary conditions on (2.7a) are 

q , ( -  ~o,y) = 3y - 4y  3, 

dP 
~-~ ( -  ~ ) =  _ 24)t -1 ' 

U ( -  oo, y )  = 3 - 12y 2 , 

(2.7b) 

, I , = - l ,  U = 0  at y = S ( X ) - H ( X ) ,  

q*= 1, U = 0  at y = S ( X ) + H ( X ) .  

(2.7c) 

Here y = S(X) denotes the centre line of  the channel. Also, equation (2.7b) matches with the 

oncoming flow properties (2.1), and (2.7c) ensures no slip at the walls as well as constant flux. 

It is noteworthy that the influence of  S(X) in (2.7a-c) can be extracted by using the co-ordinate 

y - S(X) in place o f y  (this is the Prandtl transformation), so that without loss of  generality we 

put S(X) = 0 henceforth. Again, the pressure P(X) in (2.7a) is unknown, to be found as we 

proceed with the flow calculation, and therefore any separation, if it occurs, is almost certain to 
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be a regular phenomenon, without the spurious Goldstein [18] singularity which would be 
forced by having a prescribed pressure distribution instead, such as can arise in an outer or 

inviscid region of an external flow. Finally, a symmetry condition, qJ = 0 = Uy at y = S(X) may 

be assumed in place of the conditions at one of the walls, if desired. 

The solution to (2.7a-c) can be obtained in principle by marching forward from the 

incoming solution, since the governing boundary layer equation (2.7a) is locally parabolic in the 

X-direction, provided there is no flow reversal (see below). In general a solution by numerical 
means is most desirable, for although some further simplification can be effected by taking 

H(X) -- bX (b = constant) to obtain a limiting class of Jeffery-Hamel flows (Fraenkel [ 11 ], [ 12]) 

the connection with physically realisable flows is far from obvious. 

To treat (2.7a-c) numerically we first transform the y-co-ordinate to make the walls become 

co-ordinate lines. Thus we set 

= y/H(X), and q' = F(Xj1), (2.8a) 

yielding the governing equation and boundary conditions 

I dH l kH3 dP Fnnn + k H(Fn, F x - FnFnx ) + ~ F~ - ~-~ = O, (2.9a) 

F(X,+I) = +1, Fn(X,+I) = 0, (2.9b) 

F(_  ~,.r/) = 3 1 3 ~r~ - ~ 7 ,  (2.9c) 

dP/dX(~- oo) = - 24~,-' 

in place of (2.7a-c). We note in passing that (2.9a) is the integral with respect to 77 of the 

vorticity equation 

dH 
7 + + - F , T F , 7 , T x )  = O. (2.10) 

From this we can see that if dH/dX is constant then solutions independent of X are allowable: 

these are precisely the Jeffery-Hamel solutions mentioned earlier. 
In the computational approach the equation (2.9a) was replaced by three first order central 

difference equations in the variables F, s, T and P where s --- Fn and T = sn (as in Keller & 

Cebeci [19], Smith [20]). The difference equations along with (2.9b) were then solved step by 

step in the X-direction, starting from the incoming Poiseuille flow profdes F = (37 - ~73)/2, s = 
3(1 - r72 )•2, T = -377 set at an initial upstream station X = X.**. Uniform steps AX were taken, 

the nonlinear equations being solved at each step by Newton iteration incorporating a modified 

Gaussian elimination process. 
The channels considered were described by the wall shapes 

' (2 .11)  H(X) = 1 + ~ tanh X 
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for various values of  3, (= Re). The calculations outlined above were marched forward until the 

new Poiseuille flow appropriate to the wider uniform channel (y = +_ 3/2) far downstream was 

almost achieved. Tests carried out on the numerical scheme suggested that a grid with AX = 

0.01, AT = 0.01, X.= = - 4 . 5  and an iterative tolerance of 10 -7 were sufficient for an accuracy 

of  about 0.0001 in P and r ,  where r is the scaled skin friction ~U[Oy evaluated at 77 = - 1 .  
Other tests on the computer program were made as follows. Firstly H(X) was chosen to be X, 

so that a Jeffery-Hamel profile independent of  X is a solution. Starting with the appropriate 

Jeffery-Hamel profile, this was found to be maintained by marching forward. Secondly, chan- 

nels were taken with straight-walled portions separated by curved portions (with H and H'  kept 

continuous). Starting from a Jeffery-Hamel profile the solution was marched forward along a 

straight-walled section, through a curved section, and then continued into another straight- 

;~'18 -3 

oi2 o;4 
. 

A-18 

HedP t 
d(~-X)" 

-0 ,4  -0-2 / / /  
.'Y/// - ,  

_ 

~,=18 

0"4 
1 

Figure 2. The skin friction and pressure gradient for the basic flows. Graphs of (a)H2r (= Fr/r/at ~ = -1) 
and (b) l-PdP/d(X[h) against X/h for the various values of h shown. 
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Figure 3. Some sample velocity profiles o f  the basic flows. Solutions for HU (= F~)  versus rl for (a) h = 8, 
(b) X. = 12, (c) k = 16, at the X values shown. 
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walled section. The appropriate Jeffery-Hamel profile was almost exactly attained at values of 

X typically about 5.0 past the beginning of the second straight-walled section. 
Reverting now to the expanding channel given by (2.11) we show the numerical solutions 

for the skin friction r and the pressure P against X, for various values of k, in Figure 2) The 
trend observed there is for the deviation from the incoming form in (2.9c) to occur fairly 

swiftly on the present X scale [of course physically the variation is slow], with the pressure 
gradient dP/dX rising and the skin friction 7- falling through the mouth of the channel (aroundX 

= 0). Then 7- reaches a minimum, dP/dX a maximum ahd thereafter the flow slowly attains the 

ultimate downstream Poiseuille form. As k increases the severity of the channel expansion 
increases and, in accordance, the minimum value of 7- falls, until regular separation (r = 0) is 
just achieved for ~ - 15.5 at X -  0.35. The solutions with ?, = 16, 18 exhibit regions of flow 

reversal wherein 7- < 0. These were computed using the forward marching scheme, incidentally, 
an approach which might be thought invalid/unstable numerically but which nevertheless is 
known to produce accurate solutions throughout the flow field provided that, as here, the 
reversed flow is not excessive. Typical samples of the velocity profiles are presented in Figure 3. 
It is noticeable both in Figure 2 and Figure 3 that as ?, is increased the upstream influence of 
the channel deviation decreases while the downstream influence increases, along with the rise 

in the maximum pressure gradient. 

Given the above solutions for the basic steady state flows we move on to consider next 
(Secs. 3, 4) their stability, making use of their slowly varying character. 

3. Nonparallel flow stability of fixed frequency disturbances 

The basic steady-state stream function studied in §2 may be wrifi~n ~ = F(X,~?)+ O(e 2) from 

(2.5) and (2.8b), where 77 = y/H(X) .  It follows that the partial differential equation for a linear 
disturbance to the basic flow has coefficients independent of time. Hence we are able to 
consider linear disturbances with fixed frequency. Specifically we set ~k = F(X, 7) + O(e 2) + 

f(X, r/, t) where the stream function f of tl3e disturbance is expressed in the form 

f(X,~?,t) : e - i t ° t  + iS[fo(X, rl ) + ell (X,~) + . . .  ] + c.c. . (3.1) 

Here c.c. denotes the complex conjugate of the preceding expression, and we must allow S to 

vary slowly in the streamwise direction since the basic flow does. Thus we have 

dS 
dx - Q(X), (3.2) 

say, to allow for the slowly varying coefficients in the governing partial differential equation of 

the disturbance. We choose 6o in (3.1) to be real. This is effectively the W.K.B. modification of 
the simple linear disturbance e -i~°t + i kx f ( y )  which would be used in strictly parallel flow, or in 
a quasi-parallel approximation. The time t here is nondimensionalized with respect to a 2/M. 

There is one theoretical point to discuss here before we proceed to the details 'of the 
expansion. We shall substitute ff into the full vorticity equation 
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I a t3 a ]  1 

linearize in l a n d  treat the Reynolds humber R as being independent of the small parameter e in 
the asymptotic expansion of the disturbance. This method is virtually the same as the approach 
adopted by Bouthier [2], [3], Gaster [4] and Eagles & Weissman [1]. It is believed to be both 
accurate and desirable, in this problem, to adopt the above method and then to return to the 
relation Re = X when we apply and interpret the results. Fairly extensive numerically based 
arguments in support of the approach are given in the papers cited above. An alternative 
analytically based approach is to retain the relation R = X/e throughout, which leads to a 
singular perturbation analysis of some complexity. This approach has been adopted by 
Smith [5], and applied to the lower branch properties of the neutral curve for boundary layer 
stability. His results are in fairly good agreement numerically with those of Bouthier and 
Gaster, however. The present method is also supported by the results of a numerical attack on 
the full partial differential equation for the small fixed frequency disturbance to a Jeffery- 
Hamel flow. The results of this study, by Allmen [21 ], are in close agreement with the results of 
Eagles & Weissman [1 ]. Thus some confidence seems justified in the present method. 

We proceed now with the expansion. On substituting @ into (3.3) we find that the leading 
order disturbance .to satisfies the equation 

( fo)  = 0 

where the operator 5~ is defined by 

LP =- [R- '  (D 2 - K 2 )2 _ iK{(Fn _ [J/K) (1? 2 - K 2) - Fnn n }], 

and 

D --- a/at/, (3.4) 

K(X)  = Q(X)H(X),  [J(X) = coH2(X). (3.5a,b) 

=0 at r / = l ,  (3.6) 

The boundary conditions on fo(X, rT) are 

fo,7 =fo,~nn =0 at 77=0, fo =fo,7 

for a symmetric disturbance which is well known to be the most unstable and therefore most 
worthy of study. The functions K(X)  and /3(X) in (3.5a, b) may be termed the local wave 
number and frequency, these being the values of the wave number and frequency nondimen- 
sionalized by the local length scale all(X). However, it must be emphasised that, whereas co is 
kept constant as required by the governing equation for the disturbance, the local frequency/3 
varies with X. 

Equation (3.4) and its boundary conditions (3.6) constitute the 'local' Orr-Sommerfeld 
problem and yield the results-of a parallel flow approximation. Given co (real) we may solve for 
the complex value of K(X)  and fo~ the complex eigenfunction fo(X,  7) at earl1 X station. In 
fact it is convenient to set 

f o ( X , ~ ) = A ( X ) g o ( X , ~ )  (3.7) 
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where go is normalized in some definite manner, but where the complex amplitude function 
A(X) is unknown at the present stage. In the numerical calculations described later we took 
go(X, 0) = 1 as the normalization. 

At the next order in the expansion the equation satisfied by f l  is found to be 

dA 
~ ( f l )  = ~ (goB1 +gonnB2)+A(X)(goxB1 +gonnxB2 +B3) (3.8a) 

where B1, B2, B3 and go are known functions of X and 77. Explicitly we have after some 
manipulation 

BI = 2coHa Q - 3H3 Q2 Fn -HFnn n + 4iH4 Q3 /R, 

B2 = HFn - 4ill 2 Q/R, 

B3 =go ( wH 4 dQ _3H3 Q dQ 
dX -d'X Fn + 

dH dH 
- 2H 3 wQ - ~  ~ + 2H 2 ~ Q2 BFn 

6/H4Q 2 dQ)  
R dX + go~ 

a/4 ) - 2 ~ Fnn +H3Q2Fx +HFrmx 4/H 3 dH 
R dX Q3~? 

(3.8b) 

(3.8c) 

(3.8d) 

( dH 8RH dH 2iH2 dQ)  ( 4iH dH 
+gonn - 2 - d - - x F n +  -- - ~  Q - ~ "~  + gonnn - HFx + -~- ~ Q71 

We observe that these expressions for B~, B2, B3 depend only on first order derivatives with 
respect to X, but up to third order derivatives with respect to 7/, of the known steady state 
stream function F(X,~) determined in Sec. 2, as well as on the known eigenfunctionsgo(X,r~), 

on Q(X) and on the channel semi-width H(X). 
The boundary conditions on f~ are exactly the same as those on fo, of course, and therefore 

(3.8) has a solution if and only if the correct orthogonality (or compatability) condition is 

satisfied. In the usual way (c.f. Stuart [22], Watson [23]) if the adjoint eigenfunction v(X, 77)is 
defined by the governing equation and boundary conditions 

v=Dv=O at ~7 =1, (3.9) 

D v = D  3 v = 0  at 77=0, 

then the required orthogonality condition is that the integral with respect to 77, from 0 to 1, of 
the product of v with the righthand side of (3.8a) is zero. This yields the ordinary differential 
equation 
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dA 
H,(X')A +1-120[) ~ = 0 (3.10) 

for the amplitude function A(X) of(3.7), where H1,//2 are now known functions specified by 

HI (X) = £1 1 ( f 1 
vgoxS,a  + Jo vg°"x82a  + Jo v83d,, (a.11) 

fo' fo 1 H2 (X) = v goB1 dr~ + v gonnB2drl. ' "(3.12) 

To summarize, then, we may specify w and R, solve (3.4) - (3.6) for f0 and K(X) and then 
normalize to obtain g0 [in (3:7)]; solve (3.9) for v, and use (3.10) to obtain dA(X)/dX. 

We are interested next in the growth or decay of these disturbances as the downstream 
distance increases. As explained by Eagles & Weissman [!] and earlier by Gaster [4] the growth 
rate depends on the particular physical quantity chosen for examination. Here we concentrate 
on a general measure of the disturbance, its kinetic energy density, defined by 

foH(X) (2~1~o E(X) = ~ a o {(u')2 + (0')2 }dt dy (3.13) 

where u' and v' are the velocity components of the disturbance. 
The expressions for u' and v' are 

Ogo F , 1 e_iW t+iS A(X) ~ +O(e) +c.c. u = - ~  (3.14) 

, e - i to t  + v = - iSliQ(X)A(X)go + O(e)} + c.c. 

where c.c. denotes the complex conjugate of the preceding expression and we find 

{Igo~ I______] ~ } E(X)=IA 12 -~ exp(-2Si) fol //2 +lQI21go 12 Hdrl+O(e) 

where S i denotes the imaginary part of SO0. Defining 

M(X)= fol { Ig°n12 } + H t  Qgo 12. dr/ 

we find the growth rate associated with the energy is 

(3.15) 

(3.16) 

( 3 . 1 7 ) .  

- 2Ki(X) { 2 d l A I / d X  d M / d X }  + O ( e 2 )  (3.18) 
G E ( X  ) - E -1 dE/dx - H(X) + e I A I + 
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where we have used the relation dS/dx = Q(X) = K(X)/H(X) stemming from (3.2), (3.5a) and 
borne in mind that the derivative with respect to x of the O(e) term in (3.16) is only O(e2). In 
comparing this with the growth rates in the Eagles & Weissman [ 1 ] work, in which the leading 
term is -Ki(X), one must remember that the growth rates in [1 ] are evaluated with respect to a 
different quantity and to a different coordinate. Thus in (x, y) space the growth rates of [1] do 
have leading term - K  i divided by the channel half-width, where K(X) is the eigenvalue of the 
local Orr-Sommerfeld problem. Likewise, the factor of 2 in (3.18) occurs simply because of a 

different definition used here. 
In principle, then, we may calculate the growth rate for any given values of the parameters 

R, ~, co and the coordinate X. The results are expected to be valid for sufficiently small values 

of e; and in applying them we must return to the relation Re = ~. 

4. Stability calculations and results 

We turn now to the computational tasks necessary to produce predictions from the stability 
theory of Sec. 3. For computational purposes, it proved convenient to first fix the value of X in 
(2.4), and then calculate the steady-state stream function F(X, r/;X) as described in Sec. 2; after 
that a search was conducted to find that value of R (at particular fixed values of X, X) which 
divides the regime where some fixed frequency waves grow downstream from the regime where 

all fixed frequency waves decay downstream i.e. we searched for what may be termed Rcrit(~k, 
X). 

The strategy adopted was first to calculate the growth rate for three values of the frequency 
6o at a given Reynolds number R; then to interpolate to that value of ~ which gave the 
minimum growth rate for that value of R; to repeat with two other values of R and interpolate 
(or if necessary extrapolate) to a point ( R ~ )  in R-~ space where the minimum growth rate 
was zero. New starting values were then chosen and the process above was repeated until the 

critical point (Rcrit , ~.Ocrit ) in R-co space, for the given station X and channel shape factor ~, 
was found with sufficient accuracy. 

This process was completed for a range of values of X and X and some of the results thus 

obtained are presented in Table 1, both for (i) the value o f  Refit based on the energy density 
(see Sec. 3) and for (ii) that based only on the growth rate -Qi(X), i.e. the quasi-parallel growth 
rate. 

Next We interpolated over the range of values of X, for each ~,, to find the minimum value of 

* * corresponding respectively to Rcrit (~, X) for each ~, which we may call RE, crit and RQ,crit 
(i), (ii) above, and to find the corresponding ta)E,* crit and. t.O~,crit. These are shown in Table 2, 
In the case of the quasi-parallel growth rates the corresponding * " Qcrit IS also given. The values 
Xm,E and Xm, Q in Table 2 are the corresponding stations of X at which the values of the 
Rcrit's were smallest for each given ~ value. 

The numerical methods used in the stability calculations were similar to those of.Eagles & 
Weissman [ 1 ], so that we need not describe them again here in great detail. The integiations of 
the ordinary differential equations were carried out by a Runge-Kutta fourth-order procedure 
over 20 T-steps in [0, 1 ] in general, though .~hecks were also made with 40 steps. Well tested 
computer routines were used to search for the eigenvalues K(X), and the eigenfunction go(X, 7) 
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TABLE 1 

Critical values o f  R, to and Q for various h and X 

Based on energy growth Based on quasi-parallel growth 
rate rate 

A A 

h X RE,crit toE,crit RQ,crit toQ,crit Qcrit 

8.0 0.2 65.77 1.403 69.35 1.2555 1.628 
0.4 60.54 1.206 - - - 
0.6 60.20 1.050 64.89 1.020 1.467 
0.8 64.17 0.930 - - - 

9.0 0.2 55.98 1.466 59.43 1.294 1.661 
-0.4 50.96 1.253 55.21 1.122 1.549 
0.6 49.87 1.087 54.90 0.993 1.455 
0.8 51.90 0.967 57.92 0.895 1.377 

10.0 0.2 48.96 1.515 52.34 1.323 1.687 
0.4 '44.21 1.287 48.25 1.147 1.574 
0.6 42.79 1.113 47.39 1.016 1.481 
0.8 43.85 0.988 49.14 0.920 1.405 

11.0 0.2 43.69 1.554 47.03 1.345 1.709 
0.4 39.19 1.310 43.07 1.166 1.595 
0.6 37.61 1.127 41.90 1.033 1.501 
0.8 38.13 0.999 42.90 0.937 1.427 

12.0 0.2 39.57 1.584 42.92 1.362 1.727 
0.4 35.29 1.325 39.09 1.180 1.612 
0.6 33.64 1.134 37.74 1.046 1.518 
0.8 33.84 1.002 38.24 0.950 1.445 

14.0 0.75 27.71 1.022 31.65 0.988 1.488 
0.85 27.94 0.967 31.93 0.947 1.456 
0.95 28.41 0.922 32.48 0.914 1.428 

16.0 0.6 23.94 1.107 27.83 1.074 1.564 
0.7 23.68 1.030 27.51 1.021 1.526 
0.8 23.69 0.968 27.49 0.977 1.492 
0.9 23.91 0.919 27.64 0.939 1.463 

TABLE 2 

Overall critical values o f  R and to 

h Ri~.,crit to~,erit Xm,E R~,crit to~,crit Xm,Q 

8.0 59.82 1.11 0.516 - - - 
9.0 49.83 1.11 0.570 54.61 1.04 0.518 

1020 42.78 1.11 0.615 4 7 . 3 5  1.04 0.566 
11.0 37.54 1.09 0.650 41.90 1.04 0.596 
12.0 33.50 1.08 0.678 37.71 1.02 0.640 
1420 27.70 1.04 0.722 31.61 1.01 0.696 
16.0 23.65 1.00 0.745 27.48 0.99 0.762 

(The last figure in columns 2, 4, 5 and 7 is subject to an uncertainty of ± 3). 
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was constructed. The derivatives with respect to X were determined in general by simple central 

difference formulae, and it was found that a step length of AX = 0.02 was satisfactory. After 

use of the existence condition (3.10) the equation (3.8a) was solved for f l  as a check, taking an 

independently programmed expression for the righthand side. However, the computational task 

here was considerably more complicated than that of Eagles & Weissman [ 1 ], partly because the 

steady-state solution F(X, 7) had to be calculated first and stored for each value of 9~, which in 

itself took a considerable amount of computer time (~ 6 ULCC CDC 7600 units for each X value). 
Typically the calculations of the value of Rcrit for a fixed X value and for five values of X took 

about 9 ULCC CDC 7600 units. 

Figure 4 shows the dependence on k of our two critical Reynolds numbers RE, crit and 

R~,crit. One way of interpreting Figure 4 is to think of e as a given small parameter, so that the 
1 

channel with walls y = 1 + i tanh (ex) is fixed; and to think of the Reynolds number R as a 
given large parameter. Then calculate )~ = eR and examine the position of the point (R, X) in 

Figure 4. If the point is to the left of the continuous curve then our stability theory predicts 

that all disturbances of the type considered here will decay downstream. If the point is to the 
right then the prediction is that some waves will grow, albeit for some limited range of X values. 

It would be interesting to see if such predictions agree with experimental findings and/or to 

know whether in practice the observation of such growing disturbances is rather difficult or 
not, with regard to the rather small growth rates involved and the fairly limited range of X 

values over which they grow at values of the Reynolds number R not too far above the critical 

value RE, crit. Also, of course, it may be that because a physical disturbance would presumably 
include components of perhaps many different frequencies a clear-cut observation of the domi- 

nant mode is difficult to achieve. However there is some encouragement from the experimental 
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t 

, 

%% 

2b 3b 4b 5'o 6'0 
R -------.~ 

F 
X 

Figure 4. The dependence of the overall critical Reynolds numbers on h. The continuous curve shows 
R~,crit and the dashed curve shows R~,crit, as defined in $ec. 4. Both curves pass through the point 
(R, h) = (3848, 0) which corresponds to plane Poiseuille flow. 
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Figure 5. The dependence of the overall critical Reynolds numbers on h. The continuous curve shows 
R*E crit, the nonparallel flow result, and the dashed curve shows R~ crit, the quasi-parallel result. Both curves 
pas's through the point (R, e) = (3848, 0.0) of plane Poiseuille flow.' 

evidence on boundary layer stability that theory and observation have a close correspondence 
for fixed frequency disturbances (Gaster [4], Smith [5 ]). 

It should perhaps be emphasised here that in the limit as e --> 0, with X fixed and nonzero, 

the first approximation to the steady state flow remains completely different from a Poiseuille 

flow in any region of finite X values. Our calculations are based on this limit which we believe 

should give fairly accurate predictions at practical values of  interest. Thus the critical Reynolds 

numbers, both the quasi-parallel and the non-parallel ones, with 2~ :/: 0 are expected to be less 

than the value Rcrit = 3848 which holds for Poiseuille flow, the increased range of  instability 
occurring mainly because of the more unstable basic velocity profiles, especially near the mouth 

of  the channel at X = 0. The velocity profiles there can develop inflexion points and so would 

perhaps tend to be controlled more by classical inviscid, Rayleigh-type, instability features. 

There can be therefore a gradual qualitative adjustment from the stability properties of  plane 

Poiseuille flows to those of  inflexional profiles as the motion proceeds. On the other hand, with 

= 0 and R :/: 0 we have e = 0. The basic flow is then Poiseuille flow everywhere and the 

critical value of R is 3848. Both the full and the dashed curves in Figure 4 pass through the 

point (R, ?~) = (3848, 0), giving consistency with the results of plane Poiseuille flow. Note our R 
is 2/3 times the usual R often used which is based on the channel half-width and the maximum 

velocity when the flow is Poiseuille flow. 
The computations were restricted to the range 8 < ?~ ~< 16 purely because of the time- 

consuming nature of  the work. This range was thought to give the most interesting results, 
however, inasmuch as the critical Reynolds numbers in this range are typically much smaller 
than those for Poiseuille flow. In Figure 5 we plot the stability boundaries in the R, e plane. In 

particular the contours X = 8, 12 and 16 are shown in this plane. The point e = 0, R = 3848 
would correspond to the Poiseuille flow case. For e = 0, R < 3848 we have stable Poiseuille 
flow, and for e = O, R > 3848 we have unstable Poiseuille flow. 
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In order to give some idea of the possible orders of magnitude of the growth of the kinetic 
energy of the disturbance, we may imagine an experiment in which the channel is fixed, i.e. e is 
fixed and the Reynolds number R is gradually increased. This corresponds to the point (R, ~) 

in Figure 4 being moved gradually along the straight line ~ = eR. Disturbances whose kinetic 
energy densities exhibit some growth downstream would first be possible when R is just greater 

* * and for a small range of X around Xm,E. If we continue to than  RE,crit with ~o ~- 09E,crit , 
increase R then the range of frequencies allowing such growing waves will increase, and the 

range of X for which some frequencies allow growth will increase. A detailed calculation of 

these possibilities is feasible in principle although of course it would be another major computa- 

tional task. Instead of attempting this, we have chosen certain values of e and have chosen t~ = 

* for each of these values ofe.  We have then considered a fixed value of R above RE, crit GgE, cri t 
and calculated the growth rate GE(X ) over a range of X stations. 

In figure 6 we present graphs of some of these growth rates against X. Calculations of the 

growth of the kinetic energy density E(X) were also made and are presented in Table 3. We see 

0"3 t 
GROWTH 

0-2 

O-1 

Figure 6. The growth rate GE(X ) of the kinetic energy density of the disturbance for the points E and C 
shown previously on figure 4, with the values of to = to~,crit from Table 3. The dashed curve shows the values 
of -2Qi(X ) for point C, i.e. the corresponding quasi-par~illel growth rate. 

TABLE 3 

Relative growth o f  the kinetic energy density E(X). Here to~ crit is the critical to for the appropriate E, and 
R~,crit is the corresponding critical Reynolds number. X o anal X t are the limits o f  the range o f  X for which 
the corresponding E(X) is growing downstream. 

Point in e to~,crit R~,crit R/R~,crit Relative X o X, 
Figure 4 Growth 

A 0.358 1.08 33.5 1.17 35% 0.16 1.56 
D 0.293 1.09 37.5 1.09 15% 0.24 ~- 1.1 
B 0.293 1.09 37.5 1.27 100% 0.01 = 1.80 
E 0.234 1.11 42.8 1.20 60% 0.06 1.46 
C 0.234 1.11 42.8 1.40 285% -0.12 ~- 1.94 
F 0.181 1.11 49.8 1.33 235% -0.08 1.65 
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that the greatest relative growth found in these calculations is about 285% for a value of R 

about 40% above the critical R value for that particular channel. In calculating these figures we 
used the expression 

X 

E(X)= e x p { f  GE(X)dX/e}. (4.1) 

If we had used the perhaps more natural expression 

= x / g ( x ) ,  

then the corresponding growth rates would have been halved, and the relative growths of E(X) 
considerably smaller. This might tend to suggest that there would probably be no clear-cut 
distinction experimentally between the 'stable' and 'unstable' regions in Figure 4. For when the 

Reynolds number R is just greater than its critical value the disturbances can grow so little, over 
such a limited range of X stations, that observations of random Or fixed frequency disturbances 
could well be extremely difficult experimentally. It might be suggested therefore that the 

Reynolds number would have to be considerably above critical for disturbance growths to be 
appreciable in practice. Whether or not such suggestions do prove well-founded in practice 

remains to be seen. For, alternatively, it could be that because of the long length scale [O(R)] 
associated with the dependence on X the growths predicted from our work are indeed observ- 
able. 

5. Further discussion 

1 For the particular class of channels whose walls are described by y = (1 + ~ tanh ex) we have 
calculated the critical Reynolds number below which all fixed frequency waves have their 
kinetic energy density E(X) decaying with distance downstream. This main result is illustrated 
in Figure 4. For values of the Reynolds number R greater than the above critical value the 
results show that some of the waves will have growing kinetic energy density as we move 

downstream, for some limited range of stations X. The results of this calculation, with the 
non-parallelism of the basic flow taken into account, give critical Reynolds numbers of the 
order of 10% below those of the quasi-parallel theory, as Figure 4 shows. 

The testing of the relevance of our results to the stability of the real fluid flow is not 
necessarily a clear-cut affair, of course, since unless the Reynolds number R is very much larger 
than the critical value the disturbances will simply not grow considerably, at least according to 
our nonparallel linear theory. However, there are nevertheless some grounds for reasonable 
optimism regarding experimental comparisons. The relevant theoretical results here are shown 
in Table 3. If it is assumed, by way of fourier decomposition, that random disturbances to the 
steady flow may be represented by components of the type of fixed frequency waves con- 

sidered in this paper, then the theory predicts that there is a limited range of values of X over 
which the steady basic flow might be expected to show some disturbance growth. This is a 
different situation from that of the main nonparallel flows ~to have been studied previously 
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using nonparallel  stability theory,  the straight-walled channel  and the boundary  layer flows, for 

in those two cases, where there is a simple basic flow, growing disturbances would  be expec ted  

to  occur  at all X stations for Reynolds  numbers  greater than a certain value. Natural ly this 

quali tat ive proper ty  of  our  f low si tuation follows f rom quasi-parallel theory  in any case since 

we have plane Poiseuille flow far upstream and far downst ream and more  unstable- looking 

veloci ty profiles in between.  Nevertheless it is perhaps rather surprising that  even for the 

relatively large values o f  the parameter  e used here (values as large as e -~ 0.7) the differences 

be tween  the quasi-parallel and the nonparallel  critical Reynolds  numbers  are so small, being 

only about  15% at the greatest. 
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